Turing-type instabilities in bulk–surface reaction–diffusion systems
نویسندگان
چکیده
منابع مشابه
Turing instabilities in general systems.
We present necessary and sufficient conditions on the stability matrix of a general n(> or = 2)-dimensional reaction-diffusion system which guarantee that its uniform steady state can undergo a Turing bifurcation. The necessary (kinetic) condition, requiring that the system be composed of an unstable (or activator) and a stable (or inhibitor) subsystem, and the sufficient condition of sufficien...
متن کاملTuring instabilities on Cartesian product networks
The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The...
متن کاملTuring instabilities in a mathematical model for signaling networks.
GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusi...
متن کاملMulti-Turing instabilities & spontaneous patterns in discrete nonlinear systems: simplicity and complexity, cavities and counterpropagation
Alan Turing’s profound insight into morphogenesis, published in 1952, has provided the cornerstone for understanding the origin of pattern and form in Nature. When the uniform states of a nonlinear reaction-diffusion system are sufficiently stressed, arbitrarily-small disturbances can drive spontaneous self-organization into simple patterns with finite amplitude. Emergent structures have a univ...
متن کاملTransverse instabilities in chemical Turing patterns of stripes.
We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We compare numerical computations of the Brusselator model with experiments in a chlorine dioxide-iodine-malonic acid (CDIMA) reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of reagents. Spontaneously evolving Turing structures in both systems typi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.02.050